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Abstract--In this paper the development of mixed convection in a helically coiled heat exchanger for 
Re = 500, Pr = 5 and 6 = 1/14 is studied. The influence of buoyancy forces (Gr = C (105)) on heat transfer 
and secondary flow is analyzed. In the method used the parabolized equations are solved using a finite 
difference discretization. The code is tested on mixed convection flow in a 90 ° curved tube of which the 
results are compared to the results obtained with an elliptical code. For the helically coiled tube a constant 
wall temperature is considered. It appeared that heat transfer is highly influenced by secondary flow induced 
by centrifugal and buoyancy forces. For low Grashof numbers a splitting phenomenon of the temperature 
field is observed due to large secondary velocities, resulting in two separated areas of fluid. For high 
Grashof numbers the fluid in the coiled pipe becomes almost linearly startified which results in small 
secondary velocities. A wavy behaviour in the Nusselt number is observed for medium Grashof numbers. 

© 1997 Elsevier Science Ltd. 

INTRODUCTION 

Helically coiled tubes are widely used in heat exchange 
systems, since they are relatively easy to produce, 
cheap and efficient. A typical example can be found 
in the storage vessel of a solar domestic hot water 
system (SDHWS), but many other technical appli- 
cations of helical heat exchangers can be found. When 
a SDHWS is operated according to the low-flow prin- 
ciple [l], a laminar  flow occurs and both buoyancy 
and centrifugal forces give rise to a secondary flow 
perpendicular to the main axial flow. The efficiency of 
helically coiled heat exchangers is largely influenced 
by this secondary flow through which temperature 
boundary  layers remain thin and the rate of heat trans- 
fer increases. 

In a horizontally curved pipe centrifugal forces lead 
to a secondary flow with a horizontal orientation 
resulting in the so-called Dean vortices [2]. Buoyancy 
forces in a heated pipe, however, lead to a secondary 
flow with a vertical orientation, resulting in the so- 
called Morton  vortices [3]. Intuitively one might 
expect that the resulting secondary flow in a heated 
horizontally curved pipe is tilted with respect to the 
horizontal. Considering the driving mechanism it is 
possible to make a first estimate of the magnitude of 
the secondary flow in a curved pipe. For  the secondary 
flow due to centrifugal forces, one may set up a bal- 
ance between the work done by centrifugal forces 
and the resulting kinetic energy of the secondary flow 
(neglecting dissipation) leading to : 

tAuthor to whom correspondence should be addressed. 

0o. 
ft.~ = \ReJ (1) 

with the Reynolds number  defined as Re = O,x "d/v 
and the Dean number  as Dn = Re. 6 I/2 (6 being the 
curvature ratio of the tube). Analogous for the sec- 
ondary flow due to buoyancy forces, a balance may 
be set up between work done by specific buoyancy 
forces and the resulting specific kinetic energy of the 
secondary flow which gives : 

gqx \ R e )  
(2) 

with Gr =(q" fl/v2) " AT" d 3 being the Grashof  
number. It is expected, that the secondary flow due to 
buoyancy forces for high Prandtl  number  fluids is 
lower than for low Prandtl  number  fluids. High 
Prandtl  number  fluids give rise to smaller temperature 
boundary layers and thus the effect of  viscosity will 
be more pronounced, reducing the velocity. From a 
similarity formulation for the boundary  layer equa- 
tions governing buoyancy induced flow at a vertical 
plate [4], it was found that the upward flow is pro- 
portional to 1 / ~ / l + P r  (Pr=v/cO.  Taking into 
account this Prandtl  number  effect we find : 

flax Re 
(3) 

Torsion effects induced by the pitch of a coil may 
cause a swirling secondary flow to develop [5]. The 
magnitude of this swirling flow can be estimated b y  
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d diameter of tube 
Dn Dean number 
9 acceleration due to gravity 
Gn Germano number 
Gr Grashof number 
h heat transfer coefficient 
K 'swirl' number 
Nu Nusselt number 
p 'cross-stream' pressure 
fi 'space-averaged' pressure 
p~ pitch of coil 
Pr Prandtl number 
r radial coordinate 
Ra Rayleigh number 
Re Reynolds number 
R~ curvature radius of coil 
T temperature 

NOMENCLATURE 

G, mean axial velocity 
aL~,, 'centrifugal' secondary velocity 
aGn 'pitch' secondary velocity 
ac~ 'buoyant" secondary velocity 
x axial coordinate. 

Greek symbols 
thermal diffusivity 

fi cubic expansion coefficient 
5 curvature ratio of coil 
;t heat conduction coefficient 
v kinematic viscosity 
f~ streamwise vorticity 
q5 velocity potential 

streamfunction 
0 tangential coordinate. 

ac.. (~(Gn) 
a ~  = Ree (4) 

with the Germano number defined as Gn= 
Re'~2d'Pc/(RZ+P 2) (Pc being the pitch of the coil 
and R~. the curvature radius). For low Germano 
numbers (like in a SDHWS : Gn ~ 3.6) the influence 
of the pitch on the flow field may be neglected [6]. The 
physical situation in the heat exchanger of a SDHWS 
further is characterized by the following parameters : 
Re ~ 500, 5 = 1/14, Gr = (9(10s), Pr ~ 5. Using these 
values it is estimated that ~Dn < act < G,, and thus 
centrifugal forces, buoyancy forces and pressure 
effects all have their influence on the flow field in the 
heat the exchanger. 

Notwithstanding its practical importance, there 
appears to be a serious lack of knowledge concerning 
the development of mixed convection in curved pipes. 
Most studies are limited to fully developed heat and 
fluid flow (occurring for constant heat input) [7-9] or 
to the proximate part (less than 1 turn ; see for example 
[10, 11]) of a curved pipe. In practical situations, how- 
ever, flow is mostly not fully developed (in case of 
constant wall temperatures) and the major part of 
heat transfer occurs more downstream in the coiled 
heat exchanger. Therefore, a good understanding of 
developing heat and fluid flow is of great practical 
importance. The present study focuses on the devel- 
opment of laminar mixed convection flow in a heli- 
cally coiled tube. Temperature and velocity fields are 
presented for axial distances towards the inlet up to 
100 diameters (approximately two turns), and flow 
and heat transfer parameters up to 200 diameters. 
Also the influence of the driving force for natural 
convection, quantified by the Grashof number, is 
investigated. 

NUMERICAL METHOD 

When it is known that a flow has a dominant direc- 
tion, the Navier--Stokes and energy equations (which 
are elliptic in space) can be parabolized in this so- 
called streamwise direction. The major advantage of 
parabolizing the equations is the opportunity to use 
a marching procedure: each cross-section is treated 
separately, using information of the previous one. 
This may considerably decrease the required computer 
capacities, especially when the computational domain 
in streamwise direction is relatively long. 

Parabolized Navier Stokes equations 
The parabolized Navier-Stokes and energy equa- 

tions are derived from the full equations by omission 
of shear stresses and diffusive fluxes acting in stream- 
wise direction. This prohibits information from down- 
stream to penetrate upstream and excludes the need 
for a downstream boundary condition. A further fea- 
ture of the parabolized Navie~Stokes equations is the 
role that is played by the pressure. In order to exclude 
the elliptic interaction between pressure terms in the 
momentum equation with the terms in the continuity 
equation, the pressure derivatives are split up in a 
streamwise component @/Ox and in the cross-stream 
components @/& and 1/r'Op/30, which are treated 
quite differently [12]. The cross-stream pressure 
derivatives are linked to local continuity, whereas the 
streamwise pressure derivative is coupled to the 
streamwise velocity by requiring global continuity 
over each cross-stream plane. In this sense, the 
pressure /J can be interpreted as a space averaged 
pressure over a cross-section, which is more or less 
the driving force behind the flow. 

Assuming that the x-direction coincides with the 
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streamwise direction, the parabolized Navier-Stokes 
and energy equations, based on the Oberbeck 
Boussinesq approximations, written in cylindrical 
polar coordinates, read (see Fig. 1) : 

continuity 

U r OU r 63U 0 (~U x 
- + + = o (5)  
r T , : + T ~  a 7  

r -momentum 

63Ur 63U~ U~ aU~ 01) 
Ur ~ - -  - l -  U~) - -  - -  - -  q -  Ux  

vr r ¢90 r " ~x Or 

F63u~ u~ a2u~ 632u~ 2 auo 1 
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P-momentum 
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x-momentum 
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energy 

63T OT 63T 

IOT 632T 0 2 T  1 
= (RePr)- '  ~ r  + ~r 2 + r 2 a02J" (9) 

Like in ref. [1 3], terms of order (9(6) smaller than the 
leading terms are omitted in the equations. 

In order to eliminate the cross-stream pressure 

1 2 R ~ i  

Fig. 1. Horizontally curved pipe" definitions and geometry. 

derivatives the r and 0 momentum equations are 
cross-differentiated : l /r" 63/638 x (r-momentum) - (1/r" 
0/63r" r x (0-momentum) yielding an equation for the 
streamwise component  of the vorticity f~ : 

Off Of 2 Of~ Ou~ 

ONx 63U r 63U x ~U 0 + 
r 630 63x 63r ?,x 

=Re -~ 7~, + ~ + r2630L I 

2u~ F63u~ 63u~ ] 
+ Rc_rsin0 [Wcos0-  sin0] 

Gr F(?T 63T ,,] 
- -  L~s ino+  7~cos~]  + Re 2 

(lO) 

where f~ is defined as f~ = 1/r" tour~630- 1/r" 63(ruo)/&. 
From equation (10) it is seen that centrifugal forces 
and buoyancy forces (the last two terms in the equa- 
tion), as it were, play a role as vorticity generators. 

When further a velocity potential q~ and a stream- 
function #/are defined by : 

a4 a~ c3q5+ ~ k  and u o -  (11) 
ur = ~rr r 638 r 630 63r 

then the continuity equation is replaced by 

a ~  a ~  63% aux 0 2 )  
63r ~ -}- ~ r r  q- r 2 630 2 = -- 63-X 

in combination with the following equation for f~ : 

a~ a2~ 
02-~ + + - - = f 2 .  
63r- ~ r  r 2 638 2 

(13) 

Equations (5)-(9) are thus replaced by equations (12), 
(13), (10), (8) and (9). 

Numerical solution procedure 
The numerical method used for solving the equa- 

tions presented above, is a modification of the code 
presented in ref. [14]. It is based on a standard second- 
order finite difference method [1 5]. The obtained set 
of  algebraic equations is solved by an alternating 
direction implicit method [12]. Although the gov- 
erning equations are physically coupled, in the solu- 
tion procedure each equation is treated independently, 
and the coupling finds place via an iterative loop over 
the equations as sketched in Fig. 2. 

At the first cross-section initial (boundary) values 
are prescribed for the velocity and the temperature. 
These values are used as a first guess for the solution 
at the following cross-section and for the evaluation 
of the axial derivatives in the equations. Then equa- 
tion (8) is solved and the axial pressure gradient is 
adjusted by means of a secant method [16] such that 
global continuity is preserved. The next step is to 
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~ nitial values on xi = 0 (i = 0)] 

~ ( x i = x i + d x )  

4 

Solution~ = Solutioni 1 

1 
Compute u~, and adjust ~J dxi  

] Compute Td I 

I oo puto  I 

I Compute ~b~ I ÷ 

Solution~ - SolutionS_ 1 < e ? 

Final axial position reached ?1 
i 

1 
( ) 

Fig. 2. Iterative solution procedure. 

with Ar the grid distance in radial direction. In the 
latter equation again 

R ~?O ~ 

is substituted. The temperature is set to a value depen- 
dent on the problem solved (constant or linearly vary- 
ing with axial position). 

The parabolic equations are discretized using 
40 x 180 points in r × 0 direction. For the 90  curved 
tube, of which the results are compared to the ones 
obtained with an elliptical code, 500 marching steps 
were employed. Mesh refinement to 80 x 360 points 
using 1000 marching steps showed a relative variation 
in the computed Nusselt number of less than 1%. For 
the coiled heat exchanger 7500 marching steps were 
employed to resolve an axial domain of 200d (about 
four turns). The axial discretization was refined five 
times near the entrance of the coil. The computations 
were performed on a Silicon Graphics Super Chal- 
lenge (MIPS R4400 processor). For the 9g  curved 
tube each computation took approximately 2.5 h 
CPU-time. 

compute the temperature field [equation (9)]. Then 
the velocity potential [equation (12)] followed by the 
vorticity [equation (10)] and the streamfunction 
[equation (13)] are computed. Finally, equations (11) 
are employed to calculate the secondary flow com- 
ponents. The solution procedure is repeated until con- 
vergence has been reached. 

At each cross-section, boundary conditions are 
needed for the velocity and the temperature. The vel- 
ocity is supposed to be zero at the wall according to the 
no-slip condition. Therefore, the following boundary 
conditions for the axial velocity, the streamfunction, 
the potential and the axial vorticity are prescribed at 
the pipe wall : 

u~iR=0 ~OiR=0 a~- r R = 0  nlR ~2~ 1 0q~ 
= 8 r  2 + R ~ 8 0  

(14) 

with R = 1/2d. In the boundary condition for ~[R use 
is made of 

~ 1 (~g 
(~r R = R  

implying that UobR = O. 
When discretizing fllR the term ~2~/.&2 is approxi- 

mated by : 

R 
c'~r 2 R -  + 1 2 1 . 

~(Ar) ~(Ar) ~ 

(15) 

Comparison  between elliptic and  parabol ic  results 

For validation of the parabolic code, results were 
obtained for mixed convection in a 9 0  curved tube 
and compared to elliptically computed ones, For 
details about the elliptical code used, one is referred 
to refs. [17, 18]. The domain consisted ofa 2d straight 
inflow section and a l ld (9if) curved section with 
curvature ratio 6 = 1/14. At the entrance (x = - 2 d )  
the Hagen Poiseuille velocity profile for fully 
developed pipe flow is assumed. The dimensionless 
temperature of the inflowing medium is set to 
T~,,L~t = 1. The medium is cooled by the tube wall to 
T~,,j~ = 0. At the wall a gradual decrease following a 
cosine function (1/22) of the temperature T--- 1 at 
x = - 1/2d to T = 0 at x = 1/2d is given to prevent a 
singularity at x = 0. The calculations were carried 
out for a Prandtl number Pr = 5 (water), a Reynolds 
number Re  = 500 and a Grashof number Gr = 105. 

In Fig. 3 the parabolically computed velocity and 
temperature fields are shown. The velocity field is vis- 
ualized by isotachs for the axial component and by 
velocity vectors for the secondary components. The 
difference in velocity magnitude between the different 
isotachs equals 0.2- a~,. The scaling of the secondary 
flow is such that a vector length equal to the diameter 
of the pipe corresponds to twice the average axial 
velocity. The temperature field is visualized by con- 
tours of equal temperature. The difference between 
the successive isotherms is 0.1, where the temperature 
at the wall is equal to 0. 

At x = d the flow is forced towards the outer bend 
due to centrifugal forces, resulting in a Dean type sec- 
ondary flow. More downstream it is seen how the vel- 
ocity field is affected by buoyancy forces. The medium 
is cooled at the tube wall and thus experiences a force 
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Inner Outer bend  bend 
A 

B 

C 

D C) 
Fig. 3. Velocity and temperature fields at cross-section x = d (left), x = 4d and at x = 8d (right) for 
Re = 500, Dn = 134, P r  = 5, Gr = 105. (A) elliptically computed velocity field ; (B) parabolically computed 
velocity field ; (C) elliptically computed temperature field ; (D) parabolically computed temperature field. 

downwards near the wall. This may result in symmetric 
Morton vortices in a straight tube. However, due to 
the interaction of buoyancy and centrifugal forces, the 
flow loses all symmetry. From the direction of the sec- 
ondary flow it can be derived that the centrifugal effects 
are dominant  over the buoyancy effects near the 
entrance of the curved pipe (at x = d), whereas more 
downstream the buoyancy forces seem to be more 
important. This is due to the fact that centrifugal forces 
are present from the beginning of the bend, whereas a 
temperature boundary layer first has to grow to give 
rise to buoyancy forces. Besides, in Fig. 3 the influence 
of the secondary flow field on the temperature field 
is clearly visible, resulting in relatively thin thermal 
boundary layers near the right-upper wall and relatively 
thick ones near the left-bottom wall. For  a more 
detailed description of the flow and temperature fields 
one is referred to refs. [17, 18]. 

A great similarity between the elliptically computed 
results and the parabolic results is noticed. In the 

velocity field at x = 8d even a subtle phenomenon as 
the third vortex is present. In the temperature field 
some differences can be observed, but these are most 
likely due to interpolation errors produced in the post- 
processing of the results rather than to differences in 
the solution. The stream of cooled water flowing into 
the core of the pipe is shown to be approximately 
equal, and thus the differences in heat transfer between 
the elliptic and parabolic results are expected to be 
small. The relative differences between the elliptic and 
parabolic results in terms of the Nusselt number  and 
K-number (a measure for the strength of the sec- 
ondary flow field; see the section on flow and heat 
transfer parameters, for its definition) amount  to 
maximal 6 and 10%, respectively, where the Nusselt 
and K-number reach their local maxima. The relative 
difference in bulk temperature remains less than 1%. 
In refs. [17, 18] a detailed description is given of the 
development of the flow and heat transfer parameters 
as function of axial position. 
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The parabolic procedure is also tested on the prob- 
lem of forced convection in a horizontal straight tube 
(known as the Graetz problem). The domain extended 
from x = - d  towards x = 200d. The discretization 
and the boundary conditions were the same as 
described for the 90 ~ curved tube except for the inflow 
condition which was a plug flow instead of  a Hagen -  
Poiseuille flow. The calculations were performed at a 
Reynolds number of  Re = 500 and a Prandtl number 
of  Pr = 5. The relative difference in the computed 
Nusselt number or bulk temperature with the solution 
given by ref. [19] is maximal 3%, at x = 200d, which 
again is an indication that the method is quite accu- 
rate. Also the simultaneous development of  the 
velocity and temperature field from plug flow to 
Hagen Poiseuille flow was accurately described by the 
parabolic procedure. The maximum relative difference 
in the local Nusselt number with the elliptic results of  
ref. [20] was 4%, and the maximum relative difference 
in the local Fanning friction factor with the elliptic 
results of  Schmidt (given by ref. [19]) for this situation 
was 3%. 

Preliminary stability analysis' o f  the flow 
In order to check whether or not the physical situ- 

ation investigated could indeed be described by the 
stationary equations, for the 90 ° curved tube the time 
dependent Navie>Stokes  and energy equations were 
solved at Gr = 105 using a Cranck Nicholson scheme 
for the discretization of  the time derivatives. The 
steady solution was perturbed at the first time step 
by increasing the Grashof  number momentari ly to 
Gr = 10 ~'. The time step was chosen such that the 
Brunt V~iis~il~i time scale was resolved by 30 time 
steps. The time dimensionless Brunt-V~is~il~i time 
scale is given by 0By = (Re/Gr)'(a~x/d), and the cor- 
responding Brunt V~iis~il~i frequency .[~v is equal to 
l/0uv. The Brunt V~iis~il~i frequency is an indication 
(in fact it is an over estimation [21]) of  the charac- 
teristic frequency of  gravity waves, which might occur 
in the flow. It can be expected that if buoyancy forces 
give rise to time dependency of  the flow, the Brunt-  
V~iis~l~i frequency will be the mode to be resolved 
(see also ref. [22], who experimentally found a first 
bifurcation to an unsteady air flow in a differentially 
heated cavity at Gr ~ 5" 107 with a frequency of  
0.15"JBv). The first results, however, show that a 
development in time towards a steady solution takes 
place within 2" 0By, and hence with some caution it 
may, thus, be concluded that the flow is indeed steady. 

RESULTS 

In this section the development of  isothermally 
cooled water flow in a coiled pipe will be analysed. The 
characteristic dimensionless variables are Re = 500, 
Dn = 134 (6 = 1/14), Pr = 5 and Gr = 0 -  106 , values 
related to the flow in a SDHWS. 

Description of  velocity and temperature fields 
In Fig. 4 the velocity field is shown at three axial 

positions : x = 20d (at the left side of the page), x = 50d 
and x = 100d (at the right side of  the page) and for 
four different values of  the Grashof  number : Gr = 0, 
Gr = l0 s, Gr = 5" 105 and Gr = 1 0  6. The velocity field 
is visualized by isotachs for the axial component  and 
by velocity vectors for the secondary components and 
the scaling is the same as the one used in Fig. 3. 

Figure 4A indicates that the velocity field for 
forced flow (Gr -- 0) in a coiled pipe is almost fully 
developed at x = 20d, since there are only minor chan- 
ges compared to x = 50dor  to x = 100d. The velocity 
field is characterized by two longitudinal Dean-type 
vortices and the axial velocity contours show the fam- 
iliar C-shape. 

The results obtained at higher Grashof  numbers 
show how buoyancy effects take over from centrifugal 
effects at x = 20d, and decrease with increasing axial 
position, since buoyancy forces diminish due to the 
cooling of  the fluid. In general the flow consists of  
two longitudinal vortices, but the orientation of  these 
vortices differs substantially from case to case. At x = 
20d the axial velocity field possesses a maximum at 
the upper side of  the pipe for Gr = 5" 105 and for 
Gr = 106. The influence of  centrifugal effects are min- 
imized due to the location of  the maximal axial vel- 
ocity since Dean-type flow is bounded by the tube 
wall. Furthermore,  the major part of  the medium in 
the tube is now stably stratified (as seen in Fig. 5C, 
D) and the centrifugal forces seem not strong enough 
to overcome this stabilizing effect. In fact there only 
is a thin fluid layer at the upper half of  the tube where 
an unstable stratification exists. Since wall effects here 
are strong, and downward flow in the lower half of  
the tube is prevented by the stable stratification, only 
a relatively small downward Morton-type flow has 
grown. The velocity field for Gr = 106 at x = 20d is 
remarkably similar to the two-vortex result obtained 
by ref. [23] for mixed convection in a straight tube at 
Gr~ = 8" I 05. This indicates that initially the secondary 
flow for Gr = l06 is mainly governed by buoyancy 
forces. Also for Gr = 5" 105 and for Gr = 106, eventu- 
ally buoyancy forces decrease and centrifugal forces 
begin to show their influence. This is observed at 
x = 50dand x = 100d. At x = 200d (not shown here), 
the velocity field is almost equal to the velocity field 
for Gr = 0 at x = 100d (fully developed Dean-type 
flow). 

In Fig. 5 the development of  the temperature field 
is visualized by contours of  equal temperature at axial 
positions x = 20d, x = 50d and x = 100d. The differ- 
ence between the successive isotherms is 0.1, where 
the temperature at the wall is equal to 0. For  
Gr = 5" 105 and for Gr = 1 0  6 the water in the tube at 
x = 100dwas cooled that much that even the isotherm 
of 0.1 was not visible. In these cases, the difference 
between successive isotherms was set at 0.02. 

Considering, first, the flow in the coil without buoy- 
ancy effects (Fig. 5A), it is seen that at x = 20dthe C- 
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Inner 
bend 

A 

B 

C 

Outer 
~ ~ ~ b e n d  

D 
Fig. 4. Computed isotachs and secondary velocity vectors at cross-section x = 20d (left), x = 50d and 
x = 100d (right) in an isothermally cooled coil for Re = 500, Dn = 134, Pr = 5. (A) Gr = 0 ; (B) Gr = 105 ; 
(C) Gr = 5" 105; (D) Gr = 106. A vector length equal to the radius of the pipe corresponds to the mean 

axial velocity. 

shaped temperature contours have been split into two 
relatively autonomous warm areas. This splitting is a 
result of cold medium transported from the pipe wall 
through the core to the outer wall. Since the thermal 
diffusivity of water is modest, the cold medium passing 
the core only is moderately heated by the surrounding 
warm water and remains colder than the surrounding 
water when it almost has reached the outer wall. In the 
centre of the two resulting warm areas the secondary 
velocity is small and recirculating, and thus diffusion 
of heat becomes a major mechanism of heat transfer 
there. Further downstream in Fig. 5A it is seen that 
the relatively warmer areas remain to exist. 

For the case of Gr = 105 also two relatively warm 
areas exist for x = 20d and further downstream. The 
temperature field, however, has become very complex 
due to the complex secondary flow field here, in which 
both centrifugal and buoyancy effects manifest them- 
selves. For  Gr = 5" l05 and Gr = l 0  6 the velocity field 
at x = 20d was seen to be largely influenced by buoy- 

ancy effects. The secondary flow here was less intense 
than at lower Grashof numbers, and a splitting up of 
the temperature contours is not present. The iso- 
therms here exhibit the C-shape. As described, further 
downstream centrifugal effects become increasingly 
important. These are observed first near the outer 
bend where the axial velocity is higher. At x = 50dtwo 
warmer areas have formed, which persist at x = 100d. 

Flow and  heat  transfi~r parame te r s  

The rate of heat transfer as a function of axial 
position in the coil is presented in Fig. 6 by the local 
Nusselt number. This local Nusselt number is defined 
as Nu =(h 'd /2 ) ,  in which /~ is the heat transfer 
coefficient averaged over a cross-section. The first 1 Id 
or 90 ~ of the coil for the cases Gr = 0 and Gr = 105 
have been described in refs. [17, 18]. It was explained 
there that the Nusselt number first decreases, fol- 
lowing the forced convective case, then increases, due 
to the set-up of the secondary flow and then decreases 
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Inner  Ou te r  
bend  b e n d  

A 

B 

D 

Fig. 5. Computed isotherms at cross-section x = 20d (left), x = 50dand x = 100d (right) in an isothermally 
cooled coil for Re = 500, Dn = 134, Pr = 5. (A) Gr = 0; (B) Gr = 105; (C) Gr = 5" 105; (D) Gr = 106 . 
The difference between the successive isotherms is 0.1. For Gr = 5" l05 and for Gr = l0 b at x = 100d the 

difference between successive isotherms is 0.02. 
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Axia l  pos i t i on  x/d  

Fig. 6. Nusselt number as a function of the axial position 
in an isothermally cooled coil for Re = 500, Dn = 134 and 
P r = 5 :  (I) Gr=O;  (II) Gr= l05: (III) G r = 5 " l O  5; (IV) 
Gr = 106. As a reference also the Nusselt number for develop- 

ing forced convection is plotted as the dotted line 0 [19]. 

again.  Ma i n l y  due  to  cent r i fugal  forces,  init ially a 
s t rong  s econda ry  flow deve lops  in the  core  o f  the  pipe,  
wh ich  subsequen t ly  passes  the  lower  and  u p p e r  wall  
o f  the  pipe.  Since the  m e d i u m  assoc ia ted  wi th  this 
f low is relat ively w a r m ,  as it or ig ina tes  f rom the  w a r m  
core  region,  hea t  t ransfer  f r o m  the  m e d i u m  to the  co ld  
tube  increases.  F u r t h e r  d o w n s t r e a m ,  the  m a g n i t u d e  
o f  the  s econda ry  flow near  the  tube  wall  decreases ,  
and  a l t h o u g h  relatively w a r m  wate r  is t r a n s p o r t e d  
a long  the tube  wall,  the  rate  o f  hea t  t r ans fe r  decreases  
due  to the weaker  s econda ry  convec t ive  effects. F r o m  
x = 8d the  Nusse l t  n u m b e r  increases  again.  

F o r  Gr = 0 and  Gr = 105 (lines I and  II in Fig. 6) 
it is obse rved  tha t  at  x = 16d again  a local  m a x i m u m  
in the  Nusse l t  n u m b e r  is reached.  F o r  Gr = 0 this 
is fo l lowed  by a local  m i n i m u m  at x = 29d, a local  
m a x i m u m  at x = 38d, and  so on,  wi th  decreas ing  
difference be tween  m a x i m a  and  min ima .  A physical  
r eason  for  the b e h a v i o u r  o f  the Nusse l t  n u m b e r  is 
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found in the circulating secondary flow along the tube 
wall, and in a sense it is a reflection of  the splitting up 
phenomenon described previously. Before the flow 
penetrating through the core of  the tube has reached 
the outer bend, fresh water is conveyed along the pipe 
wall by the secondary flow. After the penetrating flow 
has reached the outer bend, water transported along 
the cold wall has already been there once before, and 
was cooled then. Referring to Fig. 6, for the case 
G r =  10 ~ a similar wave phenomenon occurs, 
although the amplitude of  the waves is larger than for 
Gr = 0. This can be understood by taking into account 
that when relatively warm water flows along the cold 
wall, buoyancy causes the secondary flow to become 
stronger. As a result, secondary convective effects in- 
crease and the waves in the Nusselt number intensify. 

For  Gr = 5" 105 and Gr = 1 0  6 it has been observed 
that initially the flow is mainly influenced by buoyancy 
effects and that a relatively weak secondary flow has 
developed. In the first 75dof  these cases a wavy behav- 
iour in the Nusselt number is hardly observed, which 
seems due to the smaller secondary flow. The Nusselt 
number is substantially higher than for Gr = 0 and 
Gr = 10 ~, however. Buoyancy effects have seen to 
cause the fluid in the pipe to be translated towards the 
upper pipe wall, and here the thermal boundary layer 
has become very thin, yielding a large heat transfer. 
It has been described that eventually centrifugal forces 
take over, and from x = 75d the Nusselt number exhi- 
bits a wavy behaviour with an approximately equal 
wavelength as for G r =  0. Here the secondary flow 
has become stronger and the splitting up phenomenon 
occurs. The large peak in the Nusselt number for 
Gr = 106 at x ~ 75d may be a consequence of  this 
increase in strength of  secondary flow (see also Fig. 
8). 

Note further that at x = 200d, the temperature field 
is still not  fully developed for Gr = 5" 105 and 
Gr = 106. In the fully developed case, the Nusselt 
value does no longer change and stabilizes at 
N u  = 11.4 (Fig. 6). This value is also found using the 
correlation given in ref. [24] : N u  = 0 .836Dn°SPr  °1 for 
fully developed forced convection in a curved pipe 
with uniform wall temperature. The correlation 
is based on numerical solutions of  the equations de- 
scribing the fully developed flow and is claimed 
to be valid in the region 0.7 ~< Pr ~< 5 and Dn >1 80. 

In Fig. 7 the axial development of  the bulk tem- 
perature is given for the cases considered. At the end 
of  the 200dcoil the water shows to have released more 
than 95% of its thermal energy contents. Also the 
bulk temperature development for the Graetz problem 
is shown (line 0), which shows that at the end of  a 
200d straight tube the energy release is about 75%. 
The bulk temperatures for Gr = 0 and Gr = 105 devi- 
ate only slightly in the first 1 ld  of  a curved bend. As 
indicated by Fig. 6, further downstream, from about  
x = 20d, the Nusselt number for Gr = 105 becomes 
substantially higher than for Gr = 0. This is reflected 
in the axial evolution of  the bulk temperature, where 
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Fig. 7. Dimensionless bulk temperature as a function of 
axial position in an isothermally cooled coil for Re - 500, 
D n - 1 3 4  and P r = 5 ;  (I) G r = 0 ;  (II) Gr=105; (11I) 
G r -  5" 105; (IV) Gr = 106. As a reference also the bulk 
temperature number for developing forced convection is 

plotted as the dotted line 0 [19]. 

line 1I shows a steeper slope than line I at about  
x = 20d. The lines for the higher Grashof  numbers 
show a steeper slope from the entrance of  the bend, 
and for Gr = 106 (line IV) the water has lost 75% of  
its heat at about 40d. 

The development of  the magnitude of  the secondary 
flow has been quantified by the K-number defined as : 

fA 2 d y d z  b/se c 

K - (16) 

A U2ax dy  d z  

On the left side of  Fig. 8 the initial development (to 
x = 20d) of  the K-number is shown. The right side 
shows the further development. Note  that the scaling 
of  the axes between the left and right side is different. 
The initial growth and decrease of  the K-number for 
Gr = 0 and Gr = 105 has been discussed before in refs. 
[17, 18] and is related to the onset of  centrifugal flow 
(initial growth) and inertia forces working on the fluid 
particles (leading to an overshoot and finally a 
decrease). For  Gr = l06 the relatively large magnitude 
of  the secondary flow near the entrance is due to 
strong buoyancy effects. Further  downstream a simi- 
lar wavy behaviour as for the Nusselt number is 
observed. This is again due to the convective cir- 
culations of  the secondary flow. For  Gr = 105 the 
waves in the K-number show to correlate well with the 
waves in the Nusselt number. A high Nusselt number 
yields stronger buoyancy effects and thus a stronger 
secondary flow, For  higher Grashof  numbers the K- 
number exhibits a continuous decrease from the 
maximum near the entrance to a minimal value 
around x = 30-40d. As will be shown by Fig. 11 the 
axial evolution of  the K-number for Gr = 1 0  6 largely 
follows the axial evolution of  mixed convective flow 
in a straight tube. It has been indicated previously 
that the secondary flow is decreased due to the sta- 
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Fig. 8. Relative kinetic energy as a function of axial position in an isothermally cooled coil for Re = 500, 
Dn = 134 and Pr = 5; (I) Gr = 0; (II) Gr = 105; (III) Gr = 5' 105; (IV) Gr = 106 . 

bilizing effect of  the stratification in the core of  the 
tube. While the medium in the pipe loses its heat, the 
stratification decreases and centrifugal effects cause 
the secondary flow to increase, This happens from 
x = 40d, say. F rom x ~ 60d the wavy behaviour 
observed in the Nusselt number shows its reflection in 
the relative kinetic energy of  the secondary flow. 
Finally the K-number stabilizes at K = 4.9" 10 3. 

CONCLUDING DISCUSSION 

In the present study mixed convection in a helically 
coiled heat exchanger is studied using a parabolic solu- 
tion procedure. The code is validated by comparing 
the results to elliptically computed ones for mixed 
convection flow in the entrance section of  a curved 
tube. A fair agreement has been found. Next, mixed 
convection flow in a coil is analyzed over an axial 
distance of  200 diameters for a fixed Reynolds, Dean 
and Prandtl number and for a varying Grashof  
number. In all simulations the coil is set at a lower 
constant temperature than the inflowing medium. In 
general it is observed that increasing Grashof  numbers 
lead to enhanced heat transfer and that there is a 
strong interaction between centrifugal and buoyancy 
forces leading to complex secondary flow fields. 

F rom the comparison between the elliptic and para- 
bolic results it appeared that for water a third vortex 
is observed for Gr = 105 and Dn = 134 at position 
x = 8d (see Fig. 3). At  x = 20d, however, this vortex 
has disappeared (see Fig. 4). This seems to be in 
accordance with the findings of  ref. [10], who carried 
out flow visualization experiments using smoke injec- 
tion in air. At the outlet of  a 180" isothermally heated 
curved pipe six secondary vortices are observed for 
Dn < 600, of  which four vortices remain at Dn = 425 
and three vortices at Dn = 304 and Dn = 243 for all 
Grashof  numbers studied. For  smaller Dean numbers 
two vortices were observed. 

The splitting up phenomenon of the temperature 
field, as found in Fig. 5, has also been described by 
[25], who numerically studied the development of  the 
temperature field in a fully developed velocity field 

in a curved, isothermally heated pipe. For  the case 
Pr = 10 and Dn = 37.1, they showed that the 'kidney'-  
shaped isotherms split up in two 'eyes' of  isothermals 
at x = 0.298" Re 'd .  Since, in the present case, the 
secondary flow is substantially stronger (Dn = 134), 
the splitting up phenomenon already occurs before 
x = 0.04. Re" d. Further,  it is interesting to mention 
that ref. [25] did not  observe any splitting up of  iso- 
therms for the case of  Pr = 0.7, in which case the 
thermal diffusivity is higher and the fluid passing the 
core is sufficiently heated to avoid the occurrence of  
the two 'eyes'. 

In ref. [11] entry flow in heated curved pipes is 
studied by dividing the flow domain into two regions : 
the core region and the boundary layer. The boundary 
layer flow is solved by expanding the variables in 
powers of  the axial distance and employing a numeri- 
cal integration method. The analysis is limited by 
Gr << Re 5/2 (which is not severe) and to small axial 
distances. The results of  Nusselt number and friction 
factor, however, show clearly an oscillatory behaviour 
in axial direction. For  instance, near the entrance of  
the pipe the maximum Nusselt number is located at 
the inner bend, while it shifts towards the outer bend 
with increasing axial position. This oscillatory behav- 
iour decreases with increasing Prandtl number. The 
wavy behaviour of  the Nusselt number has been 
observed also in the study of  ref. [26], who numerically 
and experimentally studied the development of  the 
temperature field in a fully developed forced curved 
pipe flow, subject to a constant wall heat flux, and in 
the study of  ref. [27], who numerically and exper- 
imentally studied higher Prandtl number fluids, also 
for the case of  a constant wall temperature. Also in 
ref. [25] a wavy behaviour is observed, but this was 
attributed to numerical artifacts. 

As mentioned before, a physical reason for the 
behaviour of  the Nusselt number is found in the cir- 
culating secondary flow along the tube wall. As can 
be seen in Fig. 4A, at x = 20d the secondary flow has 
just made one D-shaped circulation. This explains the 
local maximum in the Nusselt number at x = 18d, 
which is the axial location where the first circulation 
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Fig. 9. Computed isotachs and secondary velocity vectors at cross-section x = 20d (left), x = 50d and 
x = 100d (right) in a isothermally cooled straight tube for Re = 500, Dn = O, Pr  = 5 and Gr = 106. A 

vector length equal to the radius of the pipe corresponds to the mean axial velocity. 

is finished. The following Nusselt waves are a reflec- 
tion of  the first one. The wavelength, A, of  this recir- 
culation effect can roughly be approximated by esti- 
mating the axial distance that a fluid particle has 
travelled, while it went through one D-shaped cir- 
culation: A ,~ (g /2+  1) ( R e / D n ) "  d [see equation (1)], 
and for the present case A ~ 10d. F rom Fig. 6 it is 
seen that this indeed is the correct order of  magnitude 
(in fact A amounts to about  17.5d). As was indicated 
before, the wavy behaviour is correlated to the split- 
ting up phenomenon in the temperature field. Cor- 
relating the estimated A to the axial distance from the 
entrance of  the coil where splitting up occurs, it is 
estimated that this may be expected at about 
x = 0 . 0 2 " R e ' d  for D n = 1 3 4  and at about 
x = 0 . 0 7 - R e ' d  for D n  = 37.1, which corresponds 
reasonably well to the values given in the previous 
section. 

It can be deduced that the splitting up phenomenon 
is less intense with decreasing Prandtl number and 
Dean number. In the first case the thermal diffusivity 
becomes larger and the penetrating cold fluid is heated 
more. In the second case the cold fluid remains longer 
in the core region since the secondary flow is less 
intense and thus the fluid is heated more. In refs. 
[26, 27] indeed a decrease in the Nusselt wave ampli- 
tude with increasing D n  and P r  is reported. 

This study has shown that for certain values of  
the Grashof  number, buoyancy effects increase the 
amplitude of  the waves, reflecting the fact that when 
the heat transfer is higher, also buoyancy effects are 
higher. When buoyancy effects become more domi- 
nant than centrifugal effects, the magnitude of  the 
secondary flow was found to decrease, and the waves 
in the Nusselt number damp out. This can be attri- 
buted to the strong stabilizing effect of  the strati- 
fication in the pipe. 

It has been indicated that the flow in the coiled pipe 
up to a certain axial distance is largely influenced by 
buoyancy effects for Gr = 5" 105 and Gr = 10 6'. For  
Gr = 106 the considered coiled pipe flow exhibits great 
similarity to straight pipe flow. By comparing Fig. 4D 
and Fig. 9 it is indeed observed that centrifugal effects 
do hardly influence the flow field at x = 20d in the 
coiled pipe case. The mixed convective flow in the 
straight tube is characterized by a weak secondary 
flow, pointing downwards in a thin layer at the upper 

half of  the tube and returning through the full width 
of  the core. The isotachs are egg-shaped and a slow 
development towards a Hagen-Poiseuil le flow is vis- 
ible at the more downstream positions. In the case of  
a coiled pipe centrifugal effects were seen to take over 
gradually. 

This also is observed in Figs. 10 and 11 for the 
development of  the Nusselt and K-number. In these 
figures the dashed lines represent the case of  both 
centrifugal and buoyancy effects, and have been 
shown before in Figs. 6 and 8. The solid lines represent 
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the cases in which only buoyancy  effects are active. In 
Fig. 10 bo th  results for Gr = 105 and  Gr = 106 are 
given. It was observed before tha t  for Gr = 105 the 
centrifugal effects are dominant .  For  Gr = l06 it is 
seen that  buoyancy  driven convect ion is the impor t an t  
heat  t ransfer  mechanism.  Only for x > 125d the solid 
and  the dashed line start  to deviate substantially.  

In Fig. 11 it is observed tha t  the solid and  dashed 
lines already deviate f rom x ~ 30d. However,  in the 
curved-tube geometry, the secondary flow resulting 
from centrifugal effects has only a minor  influence on 
the rate of  heat  t ransfer  until  x > 125d. Eventual ly 
the solid lines should reach values of  Nu = 3.66 and 
K = 0, respectively, since buoyancy  effects d isappear  
when the medium tempera ture  approaches  the wall 
temperature,  and  a fully developed Hagen-Poiseui l le  
flow will establish. 

It has been shown tha t  it is possible to analyse 
engineering mixed convective flows using the para-  
bolic solut ion procedure.  However,  only a var ia t ion 
in the G r a s h o f  n u m b e r  is made  here. In order  to 
establish new correlat ion formula  for heat  t ransfer  in 
a coil, an extensive var ia t ion  of  the other  parameters  
character izing the flow (Re, Dn, Pr) should be made. 
It has been shown, however,  tha t  for the cons tan t  
tempera ture  case a large par t  of  the flow is in the 
developing region, and  thus general correlat ions are 
difficult to derive. This implies also tha t  correlat ions 
for the fully developed case are of  limited value. 
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